2.1 Notes/Examples

When graphing you must:

Midpoint Formula:

Distance Formula:

Example: Find all points having an x-coordinate of 2 whose distance from the point $(-2,-1)$ is 5 .

Triangle Problem

∇ Plot the points $A(-2,1), B(2,3)$, and $C(3,1)$
∇ Find the length of each side of the triangle
∇ How would you decide if this triangle is a right triangle?

- Is this triangle a right triangle?
∇ Find the area of this triangle

2.2 Graphs of Equations in Two Variables; Intercepts; and Symmetry

 Graphing by Plotting Points:How to find:

$$
y \text {-intercept? }
$$

x-intercept(s)?

A graph is symmetric with respect to the \qquad if for every point (__)) on the graph, the point (__) is also on the graph.

A graph is symmetric with respect to the \qquad if for every point (__), ___) is also on the graph, the point (___).

A graph is symmetric with respect to the \qquad if for every point (__)) on the graph, the point (__) is also on the graph.

Testing for Symmetry:

x-axis	Replace \qquad with \qquad in the equation and \qquad . If the equation is \qquad as the original, then the graph of the equation is symmetric with respect to the x-axis.
y-axis	Replace \qquad with \qquad in the equation and \qquad . If the equation is \qquad as the original, then the graph of the equation is symmetric with respect to the y-axis.
Origin	Replace \qquad with \qquad in the equation and \qquad . If the equation is \qquad as the original, then the graph of the equation is symmetric with respect to the origin.

Which symmetries make the graphs functions?

Do you have to test all three?

How to Properly Show your Tests:

