Name:
MATH 1050 - Exam 4 (Released) - 2012-13

- Neatly write your solutions directly on the exam paper. If a solution requires more space than given, you may continue on the back of the page. Work on scratch paper will not be graded.
- To receive full credit you must show all necessary work and provide clear explanations.
- Books, notes, calculators with symbolic manipulation features, computers, cell phones, or other internet enabled devices are not allowed.

1. Each of these problems is worth 3 points. NO justification is required for these problems.
(a) State whether the equation $x^{2}+4 y^{2}-8 y=0$ represents the equation of a circle, ellipse, parabola, or hyperbola.
(b) For the matrices $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 3 & 4\end{array}\right]$, find $2 A-B$, if possible.
(c) Express the sum $4+2+1+\frac{1}{2}+\frac{1}{4}+\cdots+8\left(\frac{1}{2}\right)^{n}$ using summation notation. (Do not find the sum.)

$$
\Sigma
$$

(d) Find the first 3 terms of the geometric sequence with $r=\frac{1}{2}$ and $a_{1}=5$.
(e) For the arithmetic sequence $100,97,94,91, \ldots$, find d, the common difference.
(f) Find a formula for the $n^{\text {th }}$ term of the sequence $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6} \ldots$. Hint: this sequence is neither arithmetic nor geometric.
2. Write the hyperbola $2 x^{2}-y^{2}-4 x-6 y=11$ in standard form.
3. A parabola has a vertex at $(-2,3)$ and a directrix at $x=0$. Find the equation of the parabola. (You do not need to graph the parabola.)

4. Graph the ellipse $(x-1)^{2}+4(y+2)^{2}=16$. Label the center, vertices, and foci.

5. Find the first four terms of the sequence $\left\{a_{n}\right\}$ defined recursively by $a_{1}=2, a_{n}=n a_{n-1}-3$
6. If $\left\{a_{n}\right\}$ is an arithmetic sequence with $a_{6}=40$ and $a_{24}=10$, find d, the common difference.
7. Find the formula for the $n^{\text {th }}$ term of the series $24,12,6,3, \ldots$.
8. Find the sum $\sum_{k=1}^{20}(4 k-2)$.
9. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{n}}{5}$ converges of diverges. If it converges, find its sum.
10. Solve the system using elimination: $\left\{\begin{array}{rl}-x+y & -5 z \\ x+3 y & =-15 \\ x & z=-1 \\ y & z=-4\end{array}\right\}$
11. The matrix $\left[\begin{array}{llll}1 & 2 & 1 & 5 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$ represents an augmented matrix for a linear system. Write the corresponding set of linear equations.
12. Determine whether Cramer's rule can be used to solve the linear system:

$$
\left\{\begin{aligned}
3 x-6 y-z & =24 \\
-2 x+5 y+3 z & =-19 \\
x-y+z & =10
\end{aligned}\right\}
$$

If it can't be used, explain why not. If Cramer's rule can be used, use Cramer's rule to solve for z. You may use a calculator to find determinants, but must show all other work.
13. Solve the linear system $\left\{\begin{aligned} 3 x & -6 y=12 \\ -2 x & +5 y=-9\end{aligned}\right\}$ using the following method:
(a) Write the linear system as a matrix equation $A \mathbf{X}=\mathbf{B}$.
(b) Find A^{-1} using any method $A N D$ use the inverse matrix to solve the matrix equation for \mathbf{X}.
14. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$. Show all work.

