Name:______ MATH 1050 - Exam 4 (Released) - 2012-13

- Neatly write your solutions directly on the exam paper. If a solution requires more space than given, you may continue on the back of the page. Work on scratch paper will not be graded.
- To receive full credit you must show all necessary work and provide clear explanations.
- Books, notes, calculators with symbolic manipulation features, computers, cell phones, or other internet enabled devices are not allowed.
- 1. Each of these problems is worth 3 points. NO justification is required for these problems.
 - (a) State whether the equation $x^2 + 4y^2 8y = 0$ represents the equation of a circle, ellipse, parabola, or hyperbola.
 - (b) For the matrices $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 4 \end{bmatrix}$, find 2A B, if possible.
 - (c) Express the sum $4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + 8\left(\frac{1}{2}\right)^n$ using summation notation. (Do not find the sum.)
 - (d) Find the first 3 terms of the geometric sequence with $r = \frac{1}{2}$ and $a_1 = 5$.
 - (e) For the arithmetic sequence $100, 97, 94, 91, \ldots$, find d, the common difference.
 - (f) Find a formula for the n^{th} term of the sequence $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots$ Hint: this sequence is neither arithmetic nor geometric.

2. Write the hyperbola $2x^2 - y^2 - 4x - 6y = 11$ in standard form.

3. A parabola has a vertex at (-2, 3) and a directrix at x = 0. Find the equation of the parabola. (You do not need to graph the parabola.)

4. Graph the ellipse $(x - 1)^2 + 4(y + 2)^2 = 16$. Label the center, vertices, and foci.

5. Find the first four terms of the sequence $\{a_n\}$ defined recursively by $a_1 = 2$, $a_n = na_{n-1} - 3$

6. If $\{a_n\}$ is an arithmetic sequence with $a_6 = 40$ and $a_{24} = 10$, find d, the common difference.

7. Find the formula for the n^{th} term of the series 24, 12, 6, 3,

8. Find the sum
$$\sum_{k=1}^{20} (4k-2)$$
.

9. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^n}{5}$ converges of diverges. If it converges, find its sum.

	$\int -x$	+	y	_	5z = -15)
10. Solve the system using elimination: \langle		+	3y	+	z = -1
	l		y	_	z = -4)

11. The matrix $\begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ represents an augmented matrix for a linear system. Write the corresponding set of linear equations.

12. Determine whether Cramer's rule can be used to solve the linear system:

If it can't be used, explain why not. If Cramer's rule can be used, use Cramer's rule to solve for z. You may use a calculator to find determinants, but must show all other work.

- 13. Solve the linear system $\begin{cases} 3x 6y = 12 \\ -2x + 5y = -9 \end{cases}$ using the following method:
 - (a) Write the linear system as a matrix equation $A\mathbf{X} = \mathbf{B}$.

(b) Find A^{-1} using any method AND use the inverse matrix to solve the matrix equation for **X**.

14. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{bmatrix}$. Show all work.