\qquad

Math 1050 - Concurrent Enrollment 2012-13- Final Exam
High School
Parowan High School(Warr)
Cedar High School(Whetman)
Circle your high school:
Canyon View High School(Green)
Bryce Valley High School(Lefevre)
Panguitch High School(Lefevre)
Delta High School(Fowles)
Open High School(Van Ausdal)

Instructions:

- Books, notes, calculators with symbolic manipulation, phones, and computers of any type are NOT allowed.
- To receive full credit you must show all necessary work and provide clear explanations.
- If the statement of a problem uses words like 'find', 'solve', or 'determine' you are expected to give a clear explanation of the mathematical steps and reasoning involved in 'finding', 'solving', or 'determining'.
- Expressions such as $\frac{12}{3}, \sqrt{12}, \log _{2}(4)$, etc. must be simplified for full credit.
- Neatly write your solutions directly on the exam paper. If a solution requires more space than given, you may continue on the back of the page. Work on scratch paper will not be graded.
- Please write your name on the cover sheet and both portions of your exam.

For administrative use only:

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total
Possible	15	5	9	5	18	6	6	6	21	5	6	9	6	4	6	4	8	6	145
Score																			

Name:

 CE MATH 1050 - Final Exam - 2012-13

 CE MATH 1050 - Final Exam - 2012-13

 NO CALCULATOR

 NO CALCULATOR}

- Neatly write your solutions directly on the exam paper. If a solution requires more space than given, you may continue on the back of the page. Work on scratch paper will not be graded.
- To receive full credit you must show all necessary work and provide clear explanations.
- Books, notes, calculators, computers, cell phones, and other internet-enabled devices are not allowed.
- When you have completed this section, please raise your hand so the proctor will give you the calculator section of the exam.

1. Each of these problems is worth 3 points. NO justification is required for these problems.
(a) For the polynomial $p(x)=(x-3)^{2}(x+1)^{3}$, list each real zero and its multiplicity.
(b) Find $\log _{16} 4$.
(c) Determine whether the equation $4 x^{2}+4 x+9 y^{2}=9$ is an ellipse, hyperbola, parabola, or circle.
(d) For the matrices $A=\left[\begin{array}{cc}-1 & -3 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 1 \\ 3 & -1\end{array}\right]$, find $A+2 B$.
(e) The matrix $A=\left[\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right]$ has inverse matrix $A^{-1}=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$. Use the inverse matrix to solve the system of equations $\left\{\begin{array}{r}7 x-3 y=3 \\ -2 x+y=1\end{array}\right\}$.
2. Write the circle $x^{2}-12 x+y^{2}+27=0$ in standard form by completing the square.
3. For $p(x)=x^{3}+x^{2}-8 x-6$ do the following:
(a) Use synthetic division to show that -3 is a zero of $p(x)$.
(b) Find all zeros of $p(x)$.
4. Find $\sum_{k=1}^{25}(3 k+5)$.
5. For each of the functions below, graph the basic function (for example $y=x^{2}$). Then graph each function. Label at least two points on each graph, and any asymptotes.
(a) $h(x)=-\left|\frac{1}{2} x\right|$

Basic Function
(b) $g(x)=\frac{1}{x-1}-3$

Basic Function

$$
h(x)=-\left|\frac{1}{2} x\right|
$$

$$
g(x)=\frac{1}{x-1}-3
$$

(c) $f(x)=3^{-x}+1$

Basic Function

$f(x)=3^{-x}+1$
6. Graph $\frac{x^{2}}{4}-\frac{y^{2}}{4}=1$. Label the vertices, foci, and asymptotes.

7. Graph $x^{2}=8 y$. Label the vertex, directrix, and focus.

8. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 3 & -1\end{array}\right]$.

CE MATH 1050-Exam 3-2012-13
 Calculator allowed

- Neatly write your solutions directly on the exam paper. If a solution requires more space than given, you may continue on the back of the page. Work on scratch paper will not be graded.
- To receive full credit you must show all necessary work and provide clear explanations.
- Books, notes, calculators with symbolic manipulation features, computers, cell phones, or other internet enabled devices are not allowed.

9. Each of these problems is worth 3 points. NO justification is required for these problems.
(a) Let $f(x)=3 x+1$ and $g(x)=\sqrt{x-1}$. Find $(g-f)(x)$.
(b) Let $f(x)=3 x+1$ and $g(x)=\sqrt{x-1}$. Find $(f \circ g)(5)$.
(c) A degree 5 polynomial $p(x)$ with real coefficients has zeros $1,2 i$, and $3+5 i$. Find the remaining zeros of p.
(d) Find the determinant $\left|\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 3\end{array}\right|$
(e) Find a formula for the $n^{\text {th }}$ term of the geometric sequence $18,-6,2,-\frac{2}{3}, \ldots$.
(f) Determine whether the sequence $200,180,160,140,120, \ldots$ is geometric, arithmetic, or neither.
(g) Find the line of best fit for the data:

x	1	2	2	3	4
y	2	2	3	4	5

10. Find the equation of the line through the points $(3,7)$ and $(1,3)$.
11. Find the intercepts of the function $y=\sqrt{x+4}-1$.
12. For the rational function $r(x)=\frac{3 x^{2}-12}{2 x^{2}-18}$ do the following:
(a) Find the domain of $r(x)$.
(b) Find the vertical asymptote(s) of $r(x)$, if any.
(c) Find the horizontal asymptote(s) of $r(x)$, if any.
13. The function $f(x)=x^{3}-1$ is one-to-one. Find the inverse function $f^{-1}(x)$.
14. Solve $\log _{4}(x+6)=2$.
15. Solve $e^{x-4}=2^{-x}$. Give your answer as an exact value and as a decimal rounded to the nearest hundredth.
16. Find the first 5 terms of the sequence defined recursively by $a_{1}=2, a_{n}=2 a_{n-1}+2$.
17. Use elimination or an augmented matrix to solve the system of equations $\left\{\begin{array}{rrr}-x & & z=2 \\ 2 x & +y & =-5 \\ 2 x & & z=0\end{array}\right\}$.
18. The matrix $\left[\begin{array}{llll}1 & 0 & 1 & 7 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$ represents an augmented matrix for a linear system.
(a) Write the corresponding set of linear equations.
(b) Solve the system.
